Network Transport Layer:
AIMD; TCP/Reno

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnns-
xmuf25/index.shtml

11/06/2025

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Recap: Transport Design

A Basic structure/reliability: sliding window
protocols

a Determine the “right” parameters

o Timeout
o mean + variation

o Sliding window size

o Related w/ congestion control or more generally
resource allocation

o Bad congestion control can lead to congestion collapse (e.g.,
zombie packets)

o Goals: distributed algorithm to achieve fairness and
efficiency

Three Way Handshake (TWH) [Tomlinson 1975]

SYN: indicates connection setup

notify initial seq#. Accept?

think of y as a challenge

accept data only after
verified y 1s bounced back
x 18 the 1it. seq

Time Wait Design Options

Design 1 (initiator time wait)

Time = n x timeout

Time to retry FIN
after each timeout
O

All states removed

close

Close after receive FIN
All states removed

Close after
first ACK
All states ren

@ Host A

oved

T

i

Design 2 (receiver time wait)

Host B@

Time to
retransmit
ACK

All states removed

TCP Four Way Teardown

(For Bi-Directional Transport)

propose close ¢|gge
A->B FIN
A->B closed
pet close propose close
A->B closed S\ B->A

.45_ ACK

- can retransmit the 2

ACKif its ACK is lost—> g closed
£
= all states removed

closed ™ —

all states removed

Sliding Window Size Function: Rate Control

ad Transmission rate determined by congestion
window size, cwnd, over segments:

send_base hextsegnhum

I d ble, not

i i géioeg ?Sec'l'] seen-l-no

01 SRRERARERLD 0 et R
L cwnd —1

3 cwnd segments, each with MSS bytes sent in one
RTT:

cwnd * MSS
RTT

Rate =

Bytes/sec

Assume W 1s small enough. Ignore small details. MSS: Minimum Segment Size

Some General Questions

Big picture question:
d How to determine a flow’ s sending rate?

For better understanding, we need to look at
a few basic questions:

d What is congestion (cost of congestion)?

d Why are desired properties of congestion
control?

Qutline

d Admin and recap
a TCP Reliability

A Transport congestion control
> what is congestion (cost of congestion)

Cause/Cost of Congestion: Single Bottleneck

flow 1

flow 2 (5 Mbps)

- Flow 2 has a fixed sending rate of 5 Mbps

- We vary the sending rate of flow 1 from O to 20 Mbps
- Assume

o ho retransmission; link from router 1 to router 2 has infinite buffer

throughput: e2e packets
delivered in unit time

10

4 throughput of
flow 1 & 2 (Mbps)
sending rate
by flow 1 (Mbps)
0 5 -

delay due to

randomness

Delay?

, delay at central link

sending rate

by flow 1 (Mbps)

Cause/Cost of Congestion: Single Bottleneck

router 5

router 3

flow 1]

flow 2 (5 Mbps)

router 4

dAssume
o ho retransmission
o the link from router 1 to router 2 has finite buffer
o throughput: e2e packets delivered in unit time

4 throughput of (X S5]
flow 1 & 2 (Mbps) min(510,5)+ 510 dr'opped at the link from
10 router 2 to router 5; the
upstream transmission
sending rate
. by flow | (Mbps) from router 1 to router 2
0 5 "X used for that packet was

wasted!

O Zombie packet: a packet

Summary: The Cost of Congestion

When sources sending
rate too high for the
network to handle™:

Q Packet loss =>

o wasted upstream
bandwidth when a pkt is
discarded at
downstream

o wasted bandwidth due to
retransmission (a pkt
goes through a link
multiple times)

a High delay

Throughput

: packet
kn?e cliff . — 0SS

congestion
collapse

Delay

Load

Load
11

Qutline

d Admin and recap
a TCP Reliability
A Transport congestion control

o what is congestion (cost of congestion)
> basic congestion control alg.

12

Rate-based vs. Window-based

Rate-based:

a Congestion control by
explicitly controlling
the sending rate of a
flow, e.g., set sending
rate to 128Kbps

a Example: ATM

Window-based:

ad Congestion control by
controlling the window
size of a sliding window,

e.g., set window size to
64KBytes

a Example: TCP

Discussion: rate-based vs. window-based

13

Sliding Window Size Function: Rate Control

A Transmission rate determined by congestion
window size, cwnd, over segments:

send_base hextsegnhum

I d ble, not

i i géioeg ?Sec'l'] seen-l-no

01 SRRERARERLD 0 et R
L cwnd —1

3 cwnd segments, each with MSS bytes sent in one
RTT:

cwnd * MSS
RTT

Rate =

Bytes/sec

Assume W is small enough. Ignore small details. MSS: Maximum Segment Size 14

Window-based Congestion Control

P

~lP==1h

Sender Receiver

TN =T

/N

- A - A

O Window-based congestion control is self-clocking:
considers flow conservation, and adjusts to RTT
variation automatically.

0 Hence, for better safety, more designs use window-
based design. 15

The Desired Properties of a
Congestion Control Scheme

Q Efficiency: close to full utilization but low
delay

- fast convergence after disturbance
a Fairness (resource sharing)

A Distributedness (no central knowledge for
scalability)

16

Derive CC: A Simple Model

User 1

User 2

User n

sum X, >

ogoal °

Flows observe congestion signal d, and locally take

actions to adjust rates.

17

Linear Control

A Proposed by Chiu and Jain (1988)
A The simplest control strategy

a,+b,x(¢t) 1 d(t) =no cong

x (t+1) =+ .
a,+b,x (1) if d(t) = cong.

Discussion: values of the parameters?

18

State Space of Two Flows

a, +b,x.(1)
a,+b,x. (1)

x,(t+1) ={

if d(t) =no cong.
if d(t) = cong.

fairness
line: x1=x2

underload

e
e
e
4
e
e
4
4
4

overload

efficiency line:

/ x1+x2=C

19

congestion

x(t+1)= {a, +b,x,(1) if d(t) =no cong.

fairness

if d(t) = cong.

efficiency: distributed linear rule

a=(b=1

intersection 2

Implication: Congestion (overload) Case

a In order to get closer to efficiency and
fairness after each update, decreasing of
rate must be multiplicative decrease (MD)

o Qp = 0
O bD < 1
. (t . 1) . <ra1 +b]xl- (t) lf d(t) = Nno cong.

21

a, +b,x,(t) 1if d(t) =no cong.

no-congestion

efficiency

Xy

fairness

xl.(t + 1) = {% n bei(t) if d(t) = cong.

efficiency: distributed linear rule

convergence 22

Implication: No Congestion Case

QIn order to get closer to efficiency and
fairness after each update, additive and
multiplicative increasing (AMI), i.e.,

o Qr? O, bI >1

a,+b,x.(t) 1 d(t)=no cong.
b,x(t) if d(t) = cong.

x,(t+1) :{

Q Simply additive increase gives better
improvement in fairness (i.e., getting closer
to the fairness line)

3 Multiplicative increase may grow faster

23

Intuition: State Trace Analysis
of Four Special Cases

Additive Multiplicative

Decrease Decrease
Additive AIAD AIMD
Increase (br=by=1) (br=1, ay=0)
Multiplicative MIAD MIMD
Increase (a:=0, b1, by=1) (a;=ap=0)

‘a,+b,x.(t) if d(t) =no cong

x (2+1) =+ .
ap +byx, (1) if d(t) = cong.

Discussion: state transition trace.

AIMD: State Transition Trace

X)

fairness line:,
x1=x2

" overload

efficiency line:

underload x1+x2=C

Intuition: Another Look

Q Consider the difference or ratio of the rates
of two flows
o ATAD

o difference does not change

o MIMD

o ratio does not change

o MIAD

o difference becomes bigger

o AIMD

o difference does not change

26

Qutline

d Admin and recap
a TCP Reliability

A Transport congestion control
o what is congestion (cost of congestion)
O basic congestion control alg.
> TCP/reno congestion control

27

TCP Congestion Control

Q Closed-loop, end-to-end, window-based congestion
control

0 Designed by Van Jacobson in late 1980s, based on
the AIMD alg. of Dah-Ming Chu and Raj Jain

O Worked in a large range of bandwidth values: the
bandwidth of the Internet has increased by more
than 200,000 times

3 Many versions

o TCP/Tahoe: this is a less optimized version

o TCP/Reno: many OSs today implement Reno type
congestion control
o TCP/Vegas: not currently used

For more details: see TCP/IP illustrated; or read
http://Ixr.linux.no/source/net/ipv4/tcp input.c for linux implementation

28

Mapping A(M)I-MD to Protocol

a Basic questions to look aft:
o How to obtain d(t)--the congestion signal?
o What values do we choose for the formula?
o How to map formula to code?

(a, +x.(t) if d(t) =no cong

x,(t+1)=+ .
- byx,(7) if d(t) = cong.

Obtain d(t) Approach 1: End Hosts
_Cn.ns.l.dar_Lass.as.Conges’ruon

innBaEdainla

Acknowledgements (waiting seq#)

[l [3] [4 I%

Pros and Cons of endhosts Assume loss
using loss as congestion? => cong

30

Obtain d(1) Approach 2: Network Feedback
_LEQN:_Ez,p_LLgLQQ,nggsilon Notification)

Sender reduces rate if I Pros and Cons of ECN? I
Senderl ECN received.

NN
Receiver bounces marker

back to sender in ACK msg
Receiver

Network marks ECN Mark
(1 bit) on pkt according
to local condition, e.g.,
queue length > K

Sender
2

31

Mapping A(M)I-MD to Protocol

a Basic questions to look aft:
o How to obtain d(1)--the congestion signal?
o What values do we choose for the formula?
o How to map formula to code?

(a, +x.(t) if d(t) =no cong

x,(t+1)=+ .
- byx,(7) if d(t) = cong.

TCP/Reno Formulas

O Multiplicative Increase (MI)
o double the rate: x(++1) = 2 x(t)

O Additive Increase (AI)
o Linear increase the rate: x(t+1) = x(t) + 1

O Multiplicative decrease (MD)
o half the rate: x(t+1) = 1/2 x(t)

33

TCP/Reno Formula Switching

(Control Structure)

a Two "phases”
o slow-start

* Goal: getting to equilibrium gradually but quickly, to get a rough
estimate of the optimal of cwnd

- Formula: MI

o congestion avoidance

* Goal: Maintains equilibrium and reacts around equilibrium

- Formula: AT MD

20 —
18 —
16—
14—
12—

cund
{segments) 10
8 —

6 —
4—
2
0

ssthresh

0

1 2 3 4 5 [7
round-trip times

TCP/Reno Formula Switching
(Control Structure)

AQ Important variables:
o cwnd: congestion window size

o ssthresh: threshold between the slow-start phase and
the congestion avoidance phase

O If cwnd < ssthresh
o MI

Q Else -
o AIMD to-

cmd n
(segments)

MI:. Slow Start

A Algorithm: MI
o double cwnd every RTT until network congested

Q Goal: getting to equilibrium gradually but
quickly, o get a rough estimate of the
optimal of cwnd

36

MI: Slow-start

Initially:
cwnd = 1;
ssthresh = infinite (e.g., 64K);

For each newly ACKed segment:
if (cwnd < ssthresh)

/* MI: slow start*/
cwnd = cwnd + 1;

cwnd =1

cwnd =2

cwnd =4

cwnd =6

cwnd =8

segment 1

segment 2

ACK for segment 1

[

segment 3

segment 4

ACK for segments 2+ 3

segment 5

segment 6

segment 7

—

=

37

Startup Behavior with Slow-start

2

s _, '

x@ [‘_.-"-‘r /
— =2 |
E -
E &
. /'
= @ -
] A
& e
T8 .
= i
& &

g - ,..-"’..

/
8 F ra
. _ &
—
o =t | | | |
0 2 4 & A

Send Time (sec)

See [Jac89]

10

38

AIMD: Congestion Avoidance

a Algorithm: ATMD

o increases window by 1 per round-trip time (how?)

o cuts window size
* to half when detecting congestion by 3DUP
* to 1if timeout
- if already timeout, doubles timeout

Q Goal: Maintains equilibrium and reacts
around equilibrium

39

TCP/Reno Full Alg

Initially:
cwnd = 1;
ssthresh = infinite (e.qg., 64K);
For each newly ACKed segment:
if (cwnd < ssthresh) // slow start: MI
cwnd = cwnd + 1;
else

// congestion avoidance; AT
cwnd += 1/cwnd;

Triple-duplicate ACKs:

// MD
cwnd = ssthresh = cwnd/2;
Timeout:
ssthresh = cwnd/2; // reset
cwnd = 1;

(if already timed out, double timeout value; this is called exponential backoff)

40

TCP/Reno: Big Picture

cwnd TD
TD

ssthresh

/ ssthresh

/ """""""""" ssthresh|
/
> Time

slow congestion congestion congestion slow congestion
start avoidance avoidance avoidance start avoidance
(MI) (AIMD)

TD: Triple duplicate acknowledgements

TO: Timeout

41

	Network Transport Layer:�AIMD; TCP/Reno
	Slide 2
	Three Way Handshake (TWH) [Tomlinson 1975]
	Time_Wait Design Options
	TCP Four Way Teardown �(For Bi-Directional Transport)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Derive CC: A Simple Model
	Slide 18
	Slide 19
	Slide 20
	Implication: Congestion (overload) Case
	Slide 22
	Implication: No Congestion Case
	Slide 24
	Slide 25
	Intuition: Another Look
	Slide 27
	Slide 28
	Mapping A(M)I-MD to Protocol
	Obtain d(t) Approach 1: End Hosts �Consider Loss as Congestion
	Obtain d(t) Approach 2: Network Feedback (ECN: Explicit Congestion Notification)
	Mapping A(M)I-MD to Protocol
	TCP/Reno Formulas
	TCP/Reno Formula Switching �(Control Structure)
	TCP/Reno Formula Switching �(Control Structure)
	Slide 36
	Slide 37
	Startup Behavior with Slow-start
	AIMD: Congestion Avoidance
	Slide 40
	Slide 41

