
Network Transport Layer:
AIMD; TCP/Reno

Qiao Xiang, Congming Gao, Qiang Su

https://sngroup.org.cn/courses/cnns-
xmuf25/index.shtml

11/06/2025

This deck of slides are heavily based on CPSC 433/533 at Yale University, by courtesy of Dr. Y. Richard Yang.

Recap: Transport Design

❑ Basic structure/reliability: sliding window
protocols

❑Determine the “right” parameters
o Timeout

o mean + variation

o Sliding window size
o Related w/ congestion control or more generally

resource allocation

o Bad congestion control can lead to congestion collapse (e.g.,

zombie packets)

o Goals: distributed algorithm to achieve fairness and
efficiency

2

Three Way Handshake (TWH) [Tomlinson 1975]

Host A Host B

SYN: indicates connection setup

accept data only after

verified y is bounced back

x is the init. seq

notify initial seq#. Accept?

think of y as a challenge

3

Time_Wait Design Options

- Time to

retransmit

ACK

Host A Host B

close

Design 2 (receiver time wait)

Close after

first ACK

All states removed

All states removed

Host A Host B

close

- Time = n x timeout

- Time to retry FIN

after each timeout

Design 1 (initiator time wait)

Close after receive FIN

All states removed

All states removed

4

TCP Four Way Teardown
(For Bi-Directional Transport)

Host A Host B

close

close

closed
all states removed

ti
m

e
d
 w

ai
t

- can retransmit the

ACKif its ACK is lost closed

A->B closed

A->B closed

all states removed

propose close

A->B

propose close

B->A

5

Sliding Window Size Function: Rate Control

❑ Transmission rate determined by congestion
window size, cwnd, over segments:

❑ cwnd segments, each with MSS bytes sent in one
RTT:

Rate =
cwnd * MSS

RTT

Bytes/sec

cwnd

Assume W is small enough. Ignore small details. MSS: Minimum Segment Size 6

Some General Questions

Big picture question:

❑How to determine a flow’s sending rate?

For better understanding, we need to look at
a few basic questions:

❑What is congestion (cost of congestion)?

❑Why are desired properties of congestion
control?

7

Outline

❑Admin and recap

❑ TCP Reliability

❑ Transport congestion control
➢ what is congestion (cost of congestion)

8

flow 2 (5 Mbps)

flow 1

router 1 router 2

10 Mbps

Cause/Cost of Congestion: Single Bottleneck

- Flow 2 has a fixed sending rate of 5 Mbps
- We vary the sending rate of flow 1 from 0 to 20 Mbps
- Assume

o no retransmission; link from router 1 to router 2 has infinite buffer

throughput: e2e packets
delivered in unit time

Delay?

sending rate

by flow 1 (Mbps)

throughput of

flow 1 & 2 (Mbps)

5

10

50

sending rate

by flow 1 (Mbps)

delay at central link

50

delay due to

randomness

9

flow 2 (5 Mbps)

flow 1

router 1

10 Mbps

Cause/Cost of Congestion: Single Bottleneck

❑Assume
o no retransmission
o the link from router 1 to router 2 has finite buffer
o throughput: e2e packets delivered in unit time

❑ Zombie packet: a packet
dropped at the link from
router 2 to router 5; the
upstream transmission
from router 1 to router 2
used for that packet was
wasted!

router 3

router 4

router 2

router 5

router 6

sending rate

by flow 1 (Mbps)

throughput of

flow 1 & 2 (Mbps)

5

10

50 x

10)5,10min(
5

5
5 ++

+
xx

x

10

Summary: The Cost of Congestion

When sources sending
rate too high for the
network to handle”:

❑ Packet loss =>
o wasted upstream

bandwidth when a pkt is
discarded at
downstream

o wasted bandwidth due to
retransmission (a pkt
goes through a link
multiple times)

❑ High delay Load

Load

D
e

la
y

T
h

ro
u

g
h

p
u

t knee cliff

congestion

collapse

packet

loss

11

Outline

❑Admin and recap

❑ TCP Reliability

❑ Transport congestion control
 what is congestion (cost of congestion)

➢ basic congestion control alg.

12

Window-based:

❑ Congestion control by
controlling the window
size of a sliding window,
e.g., set window size to
64KBytes

❑ Example: TCP

Rate-based:

❑ Congestion control by
explicitly controlling
the sending rate of a
flow, e.g., set sending
rate to 128Kbps

❑ Example: ATM

Discussion: rate-based vs. window-based

Rate-based vs. Window-based

13

Sliding Window Size Function: Rate Control

❑ Transmission rate determined by congestion
window size, cwnd, over segments:

❑ cwnd segments, each with MSS bytes sent in one
RTT:

Rate =
cwnd * MSS

RTT

Bytes/sec

cwnd

Assume W is small enough. Ignore small details. MSS: Maximum Segment Size 14

Window-based Congestion Control

❑ Window-based congestion control is self-clocking:
considers flow conservation, and adjusts to RTT
variation automatically.

❑ Hence, for better safety, more designs use window-
based design. 15

The Desired Properties of a
Congestion Control Scheme

❑ Efficiency: close to full utilization but low
delay

- fast convergence after disturbance

❑ Fairness (resource sharing)

❑Distributedness (no central knowledge for
scalability)

16

Derive CC: A Simple Model

User 1

User 2

User n

sum

xi

d =

sum xi >

Xgoal?

x1

x2

xn

Flows observe congestion signal d, and locally take

actions to adjust rates. 17

Linear Control

❑ Proposed by Chiu and Jain (1988)

❑ The simplest control strategy





=+

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txba

txba
tx

iDD

iII

i

Discussion: values of the parameters?

18

State Space of Two Flows

x2

x1

overload

underload

efficiency line:

x1+x2=C

fairness

line: x1=x2





=+

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txba

txba
tx

iDD

iII

i

x(0)

19

x0

efficiency efficiency: distributed linear rule

x0

intersection

x0

congestion

fairness

x0





=+

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txba

txba
tx

iDD

iII

i

b=1a=0

b=1

a=0

20

Implication: Congestion (overload) Case

❑ In order to get closer to efficiency and
fairness after each update, decreasing of
rate must be multiplicative decrease (MD)
o aD = 0

o bD < 1





=

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txb

txba
tx

iD

iII

i

21

efficiency: distributed linear rule

x0

no-congestion

x0

efficiency

fairness

x0

convergence

x0





=+

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txba

txba
tx

iDD

iII

i

22

Implication: No Congestion Case

❑ In order to get closer to efficiency and
fairness after each update, additive and
multiplicative increasing (AMI), i.e.,
o aI > 0, bI > 1

❑ Simply additive increase gives better
improvement in fairness (i.e., getting closer
to the fairness line)

❑Multiplicative increase may grow faster





=

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txb

txba
tx

iD

iII

i

23

Intuition: State Trace Analysis
of Four Special Cases

Additive
Decrease

Multiplicative
Decrease

Additive
Increase

AIAD
(bI=bD=1)

AIMD
(bI=1, aD=0)

Multiplicative
Increase

MIAD
(aI=0, bI>1, bD=1)

MIMD
(aI=aD=0)





=+

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txba

txba
tx

iDD

iII

i

Discussion: state transition trace.
24

AIMD: State Transition Trace

x1

x2

x0

fairness line:

x1=x2

efficiency line:

x1+x2=C

overload

underload

25

Intuition: Another Look

❑ Consider the difference or ratio of the rates
of two flows
o AIAD

o difference does not change

o MIMD
o ratio does not change

o MIAD
o difference becomes bigger

o AIMD
o difference does not change

26

Outline

❑Admin and recap

❑ TCP Reliability

❑ Transport congestion control
 what is congestion (cost of congestion)

 basic congestion control alg.

➢ TCP/reno congestion control

27

For more details: see TCP/IP illustrated; or read

http://lxr.linux.no/source/net/ipv4/tcp_input.c for linux implementation

TCP Congestion Control
❑ Closed-loop, end-to-end, window-based congestion

control

❑ Designed by Van Jacobson in late 1980s, based on
the AIMD alg. of Dah-Ming Chu and Raj Jain

❑ Worked in a large range of bandwidth values: the
bandwidth of the Internet has increased by more
than 200,000 times

❑Many versions
o TCP/Tahoe: this is a less optimized version

o TCP/Reno: many OSs today implement Reno type
congestion control

o TCP/Vegas: not currently used

28

Mapping A(M)I-MD to Protocol

❑ Basic questions to look at:
o How to obtain d(t)--the congestion signal?

o What values do we choose for the formula?

o How to map formula to code?





=

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txb

txa
tx

iD

iI

i

29

Obtain d(t) Approach 1: End Hosts
Consider Loss as Congestion

1 2 3 4 5 6

Packets

Acknowledgements (waiting seq#)

7

2 3 4 4 4 4

Assume loss

=> cong

Pros and Cons of endhosts

using loss as congestion?

30

Obtain d(t) Approach 2: Network Feedback
(ECN: Explicit Congestion Notification)

Sender 1

Sender
2

Receiver

Network marks ECN Mark
(1 bit) on pkt according
to local condition, e.g.,
queue length > K

Receiver bounces marker
back to sender in ACK msg

Sender reduces rate if
ECN received.

Pros and Cons of ECN?

31

Mapping A(M)I-MD to Protocol

❑ Basic questions to look at:
o How to obtain d(t)--the congestion signal?

o What values do we choose for the formula?

o How to map formula to code?





=

=+
=+

cong.d(t) if)(

cong. nod(t) if)(
)1(

txb

txa
tx

iD

iI

i

32

TCP/Reno Formulas

❑ Multiplicative Increase (MI)
o double the rate: x(t+1) = 2 x(t)

❑ Additive Increase (AI)
o Linear increase the rate: x(t+1) = x(t) + 1

❑ Multiplicative decrease (MD)

o half the rate: x(t+1) = 1/2 x(t)

33

TCP/Reno Formula Switching
(Control Structure)

❑ Two “phases”
o slow-start

• Goal: getting to equilibrium gradually but quickly, to get a rough
estimate of the optimal of cwnd

• Formula: MI

o congestion avoidance
• Goal: Maintains equilibrium and reacts around equilibrium

• Formula: AI MD

34

TCP/Reno Formula Switching
(Control Structure)

❑ Important variables:
o cwnd: congestion window size

o ssthresh: threshold between the slow-start phase and
the congestion avoidance phase

❑ If cwnd < ssthresh
o MI

❑ Else
o AIMD

35

MI: Slow Start

❑Algorithm: MI
o double cwnd every RTT until network congested

❑ Goal: getting to equilibrium gradually but
quickly, to get a rough estimate of the
optimal of cwnd

36

MI: Slow-start

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 6

Initially:
 cwnd = 1;
 ssthresh = infinite (e.g., 64K);

For each newly ACKed segment:
 if (cwnd < ssthresh)
 /* MI: slow start*/
 cwnd = cwnd + 1;

cwnd = 8

37

Startup Behavior with Slow-start

See [Jac89] 38

AIMD: Congestion Avoidance

❑Algorithm: AIMD
o increases window by 1 per round-trip time (how?)

o cuts window size
• to half when detecting congestion by 3DUP

• to 1 if timeout

• if already timeout, doubles timeout

❑ Goal: Maintains equilibrium and reacts
around equilibrium

39

TCP/Reno Full Alg

Initially:
 cwnd = 1;
 ssthresh = infinite (e.g., 64K);
For each newly ACKed segment:
 if (cwnd < ssthresh) // slow start: MI
 cwnd = cwnd + 1;
 else
 // congestion avoidance; AI

 cwnd += 1/cwnd;
Triple-duplicate ACKs:
 // MD
 cwnd = ssthresh = cwnd/2;
Timeout:
 ssthresh = cwnd/2; // reset
 cwnd = 1;
(if already timed out, double timeout value; this is called exponential backoff)

40

TCP/Reno: Big Picture

Time

cwnd

slow

start

(MI)

congestion

avoidance

(AIMD)

TD

TD: Triple duplicate acknowledgements

TO: Timeout

TO
ssthresh

ssthresh ssthresh
ssthresh

congestion

avoidance

TD

congestion

avoidance
slow

start

congestion

avoidance

TD

41

	Network Transport Layer:�AIMD; TCP/Reno
	Slide 2
	Three Way Handshake (TWH) [Tomlinson 1975]
	Time_Wait Design Options
	TCP Four Way Teardown �(For Bi-Directional Transport)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Derive CC: A Simple Model
	Slide 18
	Slide 19
	Slide 20
	Implication: Congestion (overload) Case
	Slide 22
	Implication: No Congestion Case
	Slide 24
	Slide 25
	Intuition: Another Look
	Slide 27
	Slide 28
	Mapping A(M)I-MD to Protocol
	Obtain d(t) Approach 1: End Hosts �Consider Loss as Congestion
	Obtain d(t) Approach 2: Network Feedback (ECN: Explicit Congestion Notification)
	Mapping A(M)I-MD to Protocol
	TCP/Reno Formulas
	TCP/Reno Formula Switching �(Control Structure)
	TCP/Reno Formula Switching �(Control Structure)
	Slide 36
	Slide 37
	Startup Behavior with Slow-start
	AIMD: Congestion Avoidance
	Slide 40
	Slide 41

